

Projective Coordinates Leak

Marc Stoecklin

SSC

Semester Project

Responsible

Prof. Serge Vaudenay EPFL / LASEC

Supervisors

Jean Monnerat Thomas Baignères EPFL / LASEC

Overview

- 1. Elliptic Curves and Projective Coordinates
- 2. Description of the Attack
- 3. Required Operations on Finite Fields
- 4. Implementation Issues
- 5. Results and Analysis
- 6. Thwarting the Attack
- 7. Conclusion

Elliptic curves

Defined by a polynomial equation

- over a field, e.g., the finite field F_p
- F_p with $p \neq 2$, 3

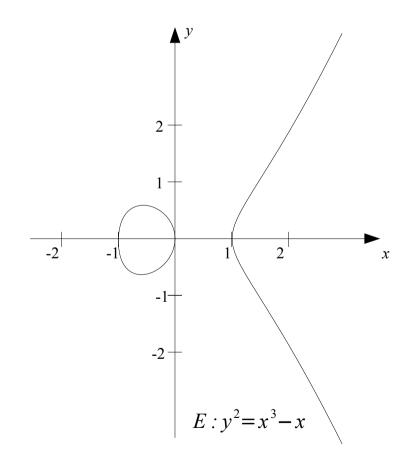
$$E: y^2 = x^3 + ax + b$$

where $a, b \in \mathbf{F}_p$.

Affine coordinates

- unique representation of an element

$$P = (x, y)$$



Operations on Affine Coordinates

Problem

- Affine arithmetic formulae require field inversions (divisions)
- Computation is expensive

Solution

- Represent points in projective coordinates
- Perform computation with division-free formulae

Advantage

Single field inversion required to convert back to affine representation

Projective Coordinates

Representation of curve points

Affine representation

Projective Representation

$$P=(x,y)$$

$$P = (X : Y : Z)$$

Jacobian Projective coordinates

$$(x,y) = \left(\frac{X}{Z^{2}}, \frac{Y}{Z^{3}}\right) \qquad (X:Y:Z) = \left(\lambda^{2} x : \lambda^{3} y : \lambda\right)$$

- There exist p - 1 projective representations of a curve point

Attack on Projective Coordinates

Proposed by Naccache, Smart, and Stern at Eurocrypt 2004

Setup

Elliptic curve E with public base point G of prime order

Application

- Secret exponent k
- Projective double-and-add multiplication to obtain P = [k]G
- e.g., Signatures/Diffie-Hellman Key Exchange

Question

- Does the projective representation of *P* reveal information about *k*?

Double-and-add multiplication

Binary left-to-right multiplication

```
INPUT:
         k = (k_{t-1}, \dots, k_1, k_0), P \in E
OUTPUT: Q = [k]P \in E
1: Q \leftarrow O
2: for i = t - 1 downto 0 do
3: Q \leftarrow [2]Q
4: if k_i = 1 then
   Q \leftarrow Q + P
5:
6:
    end if
    end for
    Return(Q)
```

Attack scheme

Computation of P = [k]G

$$G \Rightarrow M_L \Rightarrow ... \Rightarrow M_2 \Rightarrow M_1 \Rightarrow P$$

Attack procedure

– The last operation in the double-and-add multiplication to obtain ${\cal P}$ from the intermediate point M_I was either

$$P = [2]M_1$$
 or $P = M_1 + G$

- The adversary obtains the projective representation of P
- He guesses on the last bit and inverts the last operation

Attack scheme: Inverting a doubling

- **Assumption**: $M_i \Rightarrow M_{i-1}$ is a doubling
 - find affine intermediate point M_i (unique point)

$$M_i = (x_i, y_i) = [2^{-1}]M_{i-1}$$

- consider the projective Jacobian doubling formula

$$Z_{i-1} = 2 Y_i Z_i = 2 y_i Z_i^4$$
 $\Rightarrow Z_i = \sqrt[4]{\frac{Z_{i-1}}{2y_i}}$

- extract fourth root in F_p to find projective representations of M_i :
 - if $p \equiv 1 \pmod{4}$: possible in half of the cases, yields 2 solutions
 - if $p \equiv 3 \pmod{4}$: possible for one quarter, yields 4 solutions

Attack scheme: Inverting an addition

- **Assumption**: $M_i \Rightarrow M_{i-1}$ is an addition
 - find affine intermediate point M_i (unique point)

$$M_i = (x_i, y_i) = M_{i-1} - G$$

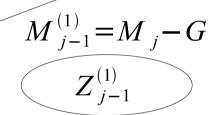
consider the projective Jacobian addition formula

$$Z_{i-1} = (x_i - x_G) Z_i^3$$
 $\Rightarrow Z_i = \sqrt[3]{\frac{Z_{i-1}}{x_i - x_G}}$

- extract cube root in F_p to find projective representation(s) of M_i :
 - if $p \equiv 1 \pmod{3}$: possible a third of all cases, yields 3 solutions
 - if $p \equiv 2 \pmod{3}$: always possible, yields 1 solution

Attack scheme: Tree

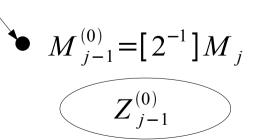
- assume bit $k_i = 1$
- subtract G from M_j
- extract cube roots
- iterate on the solutions by halving



$$M_{j-2}^{(1)} = [2^{-1}]M_{j-1}^{(1)}$$

$$Z_{j-2}^{(1)}$$

- assume bit $k_i = 0$
- halve the affine point M_i
- extract fourth roots to find the set of admissible projective representations



 M_j, Z_j

Attack analysis

For Jacobian projective coordinates, reversing a bit may lead to a set of pre-images depending on p:

p mod 12	$P \rightarrow P + G$	$P \rightarrow [2]P$	$k_i = 0$	$k_i = 1$
1	$3 \hookrightarrow 1$	4 → 1	4 pre-images	12 pre-images
5	$1 \hookrightarrow 1$	4 → 1	4 pre-images	4 pre-images
7	$3 \hookrightarrow 1$	$2 \hookrightarrow 1$	2 pre-images	6 pre-images
11	$1 \hookrightarrow 1$	$2 \hookrightarrow 1$	2 pre-images	2 pre-images

Pr["
$$(M_i, Z_i)$$
 has pre-images"] = $\frac{1}{\text{# of pre-images}}$

Illustrative Example (1)

Setup

- Curve
$$E: y^2 = x^3 + 4x + 20$$
 defined over F_{29}

- Base Point G = (5, 22)

Multiplication

- Secret
$$k = 11_{10} = 1011_2$$

- Result
$$P = [k]G = (27:28:18)$$

Assumption:
$$k_0 = 0$$

solve
$$Z = \sqrt[4]{3} \pmod{29}$$

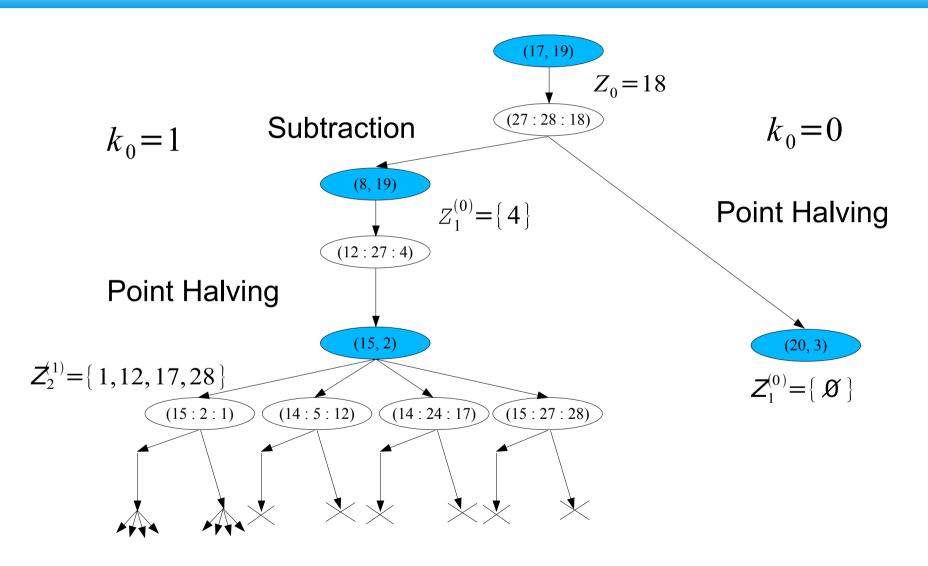
 \Rightarrow no solutions: $k_0 \neq 0$

Assumption: $k_0 = 1$

solve
$$Z = \sqrt[3]{6} \pmod{29}$$

⇒ 1 solution

Illustrative Example (2)



Required Operations for the Attack

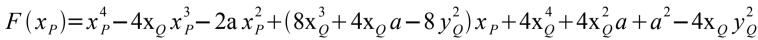
- Find cube roots in F_p
- Find fourth roots in F_p
 - Reduction to two consecutive square roots in F_p
- Point Halving on a curve E
 - There exists no closed-form formula as for addition/doubling
 - Point doubling is not necessarily injective
- Factorizing polynomials in F_p

Point Halving

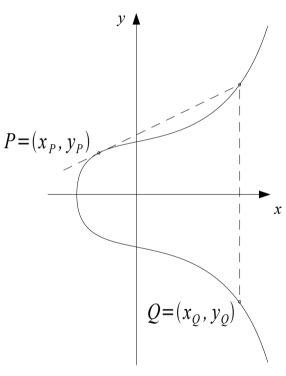
Formulae for point halving

- by knowing the order of the group (too limiting)
- by deriving geometrically from the curve equation (factorizations/expensive)
- by reversing the formulae for doubling (factorization of a polynomial of deg. 4)

Factorize the polynomial



Cantor-Zassenhaus algorithm



Implementation with GMP

GMP

- GNU Multiple Precision Arithmetic Library from "Swox AB", Sweden

Implementation

- Elliptic curve and finite field arithmetic
- Attack by knowing the order of the curve
- Factorization with Cantor-Zassenhaus provided by NTL

Issues

- Problematic converting: GMP to NTL representation and vice versa
- Efficiency, e.g., finding a generator in F_p or counting curve points

Implementation with LiDIA

LiDIA

- C++ library written by "Institute for Computer Algebra, Distributed Systems and Cryptography", TU Darmstadt
- Built-in finite field and elliptic curve arithmetics
- Cantor-Zassenhaus algorithm for factorization

Issues

- Compilation problems with recent compilers (Latest stable: Dec 04)
- Bugs in the code (bug report filed)

Attack Library

- Wrapper class ECC wrapper
 - double-and-add multiplication
 - point halving (by using the Cantor-Zassenhaus algorithm)
- Utilities class FF_utils
 - cube and fourth roots algorithm
- Attack class Attack
 - launch an attack on a projective point
 - obtain statistics (Graphviz, AWK, Gnuplot)

Results and Analysis

- Visualization of a sample attack run
- Determining a few trailing bits of the secret
 - random curves and random base points
 - curves defined by the NIST
- Key ranking and position expectation
 - random curves and random base points
 - curves defined by the NIST

Visualization of an Attack Run (1) DEMO

Configuration

- Curve
$$E: y^2 = x^3 - 3x + 12$$
 defined over F_{12301} (16 bits)

- Base Point
$$G = (3111, 10607)$$

- Secret
$$k = 2120_{10} = 100001001000_2$$

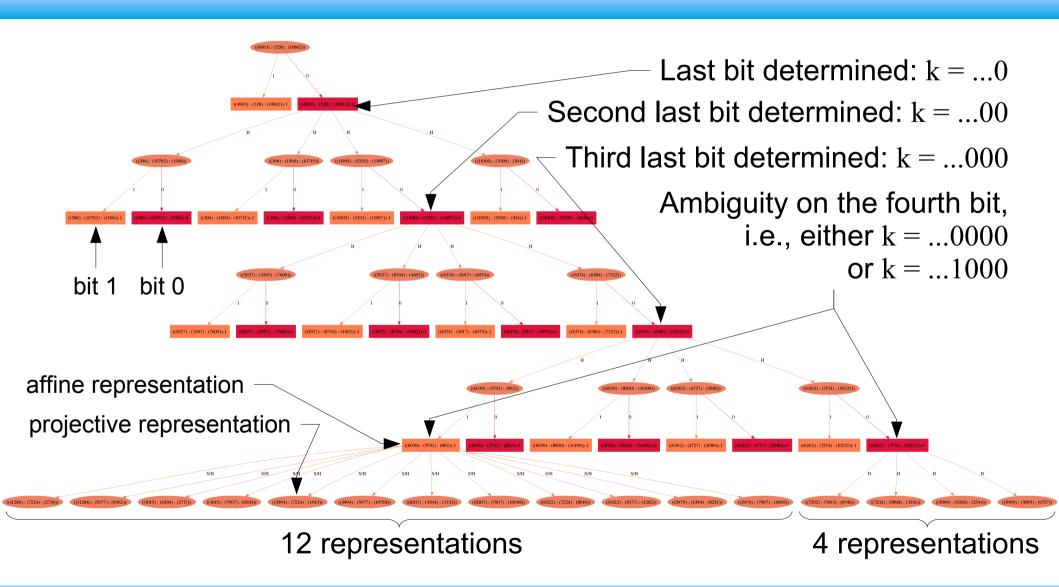
Recall

p mod 12	$P \rightarrow P + G$	$P \rightarrow [2]P$	$k_i = 0$	$k_i = 1$
1	3 → 1	4 → 1	4 pre-images	12 pre-images

Attack run

- attempt to determine the last 4 bits

Visualization of an Attack Run (2) DEMO



Determining trailing bits (1)

p mod 12	1	5	7	11
Pr["parity even k even"]	0.938	0.773	0.844	0.512
Pr["parity odd k odd"]	0.873	0.768	0.504	0.469
Pr["bit 0 correct"]	0.895	0.771	0.674	0.490
Pr["bit 1 correct"]	0.518	0.107	0.187	0.000
Pr["bit 2 correct"]	0.200	0.000	0.059	0.000
Pr["bit 3 correct"]	0.041	0.000	0.022	0.000
Pr["bit 4 correct"]	0.010	0.000	0.005	0.000
Pr["bit 5 correct"]	0.003	0.000	0.001	0.000

1024 experiments on random curves over a field of 32 bits

Determining trailing bits (2)

NIST curve	P-192	P-224	P-256	P-384	P-512
p mod 12	11	1	7	11	7
Pr["parity even k even"]	0.521	1.000	0.822	0.480	0.861
Pr["parity odd k odd"]	0.498	1.000	0.484	0.492	0.482
Pr["bit 0 correct"]	0.510	1.000	0.653	0.486	0.672
Pr["bit 1 correct"]	0.000	0.996	0.139	0.000	0.140
Pr["bit 2 correct"]	0.000	0.980	0.040	0.000	0.042
Pr["bit 3 correct"]	0.000	0.953	0.019	0.000	0.017
Pr["bit 4 correct"]	0.000	0.953	0.005	0.000	0.006
Pr["bit 5 correct"]	0.000	0.594	0.002	0.000	0.001

1024 experiments on NIST curves (256 runs for P-224)

True Sequence Position Expectation (TSPE)

Question

- Is it possible to obtain a meaningful statistic on trailing bit sequences of length ℓ of the secret k?

Key ranking

- Attack on \(\ell \) bits: count the representations per admissible sequence
- Determine the position of the ℓ last bits of k in the key ranking: **Expected position of the true sequence** $pos_{true,k}$

Average expected position

- Repeat the key ranking for distinct values of k for a configuration
- Average expected position $\mu_{pos} = \sum_{k} pos_{true,k}$

Establishing the Key Ranking

Example

- 16 possible bit sequences

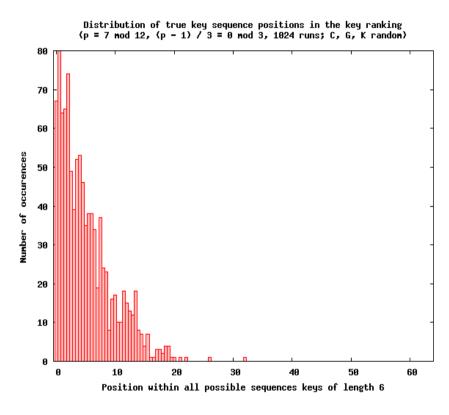
$$- k = 2750_{10} = 1010101111110_2$$

- Expected position:

$$pos_{true} = \frac{3-1}{2} = 1$$

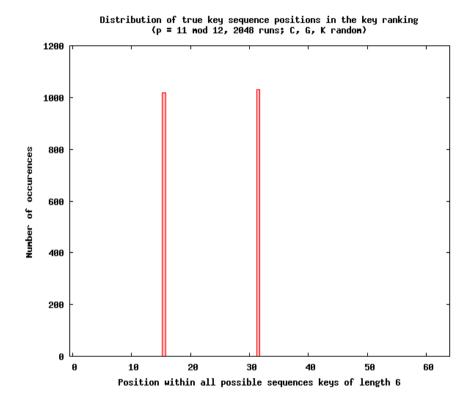
Index	Bit sequence	Possible representations
0	0110	36
1	1100	36
2	1110	36
3	0010	12
4	0100	12
5	0000	4
6	0001	0
7	0011	0
8	0101	0
9	0111	0
10	1000	0
•••		

TSPE on Random Curves



 $p \equiv 7 \pmod{12}, \ \ell = 6$

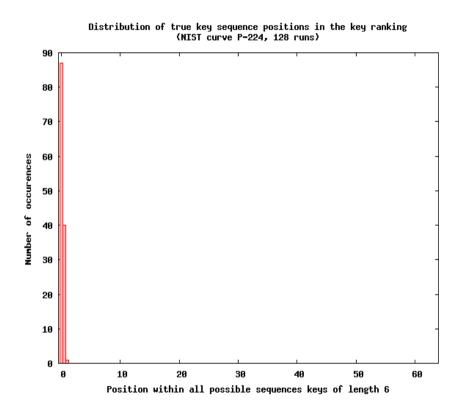
Average position: $\mu_{pos} = 5.10$



$$p \equiv 11 \pmod{12}, \ell = 6$$

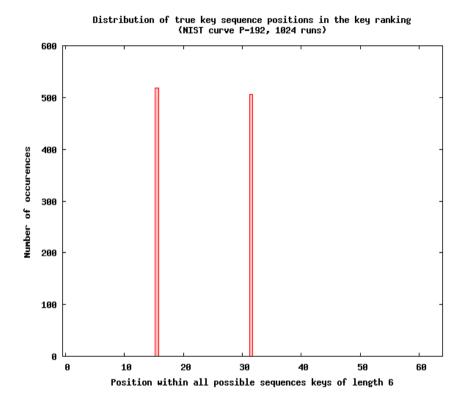
Average position: $\mu_{pos} = 23.55$

TSPE on NIST Curves



P-224: $p \equiv 7 \pmod{12}$, $\ell = 6$

Average position: $\mu_{pos} = 0.16$

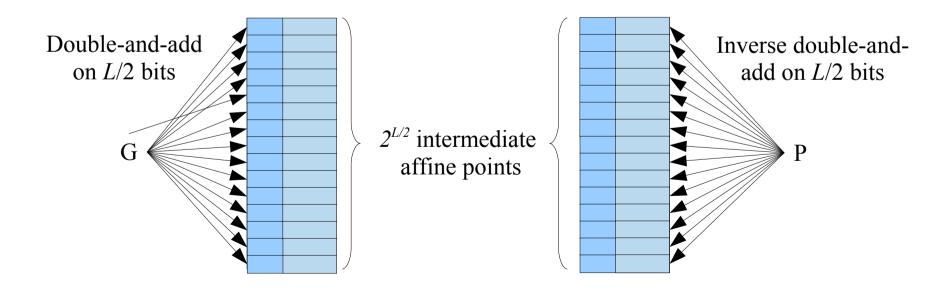


P-192:
$$p \equiv 11 \pmod{12}$$
, $\ell = 6$

Average position:
$$\mu_{pos} = 23.75$$

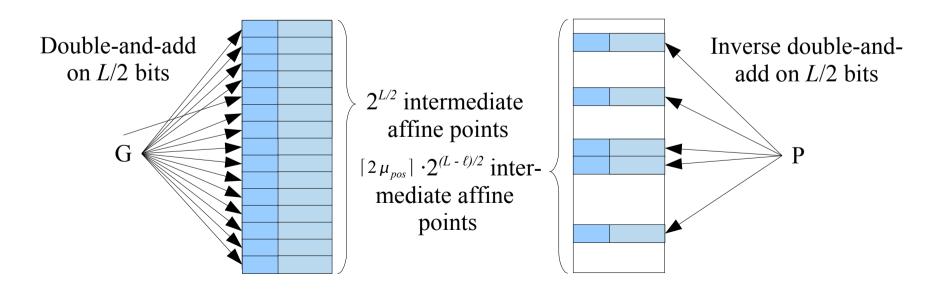
Meet-in-the-Middle Attack

- Time-Memory tradeoff: Meet-in-the-middle Attack
 - Applicable to the double-and-add multiplication on affine points, e.g., with keys of size ${\cal L}$
 - Complexity: $O(2^{rac{L}{2}})$ in computation and $O(2^{rac{L}{2}})$ in memory



Meet-in-the-Middle Attack with TSPE

- Probabilistic set of sequences of length ℓ : $[2\mu_{pos}] \ll 2^{\frac{\iota}{2}}$
 - Keep keys with tailing sequences in the key ranking with positions $0 \le \text{index} \le \lceil 2 \mu_{pos} \rceil$
 - Complexity: left side remains, right side: $O\left(\lceil 2\,\mu_{\scriptscriptstyle pos}\rceil 2^{\frac{L-\ell}{2}}\right)$



Thwarting the Attack

Replace the double-and-add multiplication output

- randomize $(X : \varepsilon Y : \varepsilon Z)$ where $\varepsilon = \pm 1$
- replace (X:Y:Z) by $(\lambda^2 X:\lambda^3 Y:\lambda Z)$ with random λ (more drastic)

Transforming the base point G

- randomly chosen projective representation
- use a new representation for G for every addition operation

Choice of the curve

- avoid curves such as P-224, use $p \equiv 11 \pmod{12}$ instead

Conclusion

- **Projective representation of** P = [k]G leaks information
 - depending on the characteristic of the underlying field
 - $p \equiv 1, 7 \pmod{12}$ allow to obtain more information (pre-images)
- Key rankings and true sequence position expectations
 - reduce the workload in brute-force attacks/time-memory tradeoffs
 - in particular the NIST curve P-224 is prone to the attacks

Thwarting the attacks

through careful implementation and choice of the curve

Questions

Thank you for your attention.

Demonstrations: Full Scenario

Encrypt a key on P-256

./examples encryption.sh

Scenario 3

Find the TSPE set

./examples_find_TSPE_set.sh

Scenario 3

Find the last bits

./examples_find_lastbits_AWK.sh

Scenario 3